A Stability Analysis of Divergence Damping on a Latitude–Longitude Grid
نویسندگان
چکیده
The dynamical core of an atmospheric general circulation model is engineered to satisfy a delicate balance between numerical stability, computational cost, and an accurate representation of the equations of motion. It generally contains either explicitly added or inherent numerical diffusion mechanisms to control the buildup of energy or enstrophy at the smallest scales. The diffusion fosters computational stability and is sometimes also viewed as a substitute for unresolved subgrid-scale processes. A particular form of explicitly added diffusion is horizontal divergence damping. In this paper a von Neumann stability analysis of horizontal divergence damping on a latitude–longitude grid is performed. Stability restrictions are derived for the damping coefficients of both secondand fourthorder divergence damping. The accuracy of the theoretical analysis is verified through the use of idealized dynamical core test cases that include the simulation of gravity waves and a baroclinic wave. The tests are applied to the finite-volume dynamical core of NCAR’s Community Atmosphere Model version 5 (CAM5). Investigation of the amplification factor for the divergence damping mechanisms explains how small-scale meridional waves found in a baroclinic wave test case are not eliminated by the damping.
منابع مشابه
Stability Improvement of Grid-connected Converter with LCL Filter based on Capacitor Current Active Damping by Computational Delay Reduction
Nowadays, LCL filters utilization to suppress the grid-connected inverter switching harmonics is expanding and various methods such as capacitor current active damping scheme could be investigated to damp out these harmonics. However, the computational delays including control system, and PWM switching delays have significant effect on damping system stability. In most of LCL filter parameter d...
متن کاملAn Equal Area Quad-tree Global Discrete Grid Subdivision Algorithm Based on Latitude and Longitude Lines
In order to effectively solve the problems of global discrete grid in spatial data management and operations, a novel equal area quad-tree global discrete grid subdivision model based on latitude and longitude lines is proposed in this paper. Coding rules of grid cells, and geometric distortion calculation and analysis of the grid model are also given in the detailed subdivision process. The re...
متن کاملMultiobjective Retuning the Power System Stabilizer (PSS) of a Real Power Plant in Iran Grid
The safe operation of power system depends on its stability and security supply in all times. The dynamic instability (small signal instability) is one of phenomena that results in power system instability and has been discussed as a challenge in power system control and operation from a long time ago. Commonly the dynamic instability appears as undamped low frequency electromechanical oscillat...
متن کاملA General Rule for the Influence of Physical Damping on the Numerical Stability of Time Integration Analysis
The influence of physical damping on the numerical stability of time integration analysis is an open question since decades ago. In this paper, it is shown that, under specific very general conditions, physical damping can be disregarded when studying the numerical stability. It is also shown that, provided the specific conditions are met, analysis of structural systems involved in extremely hi...
متن کاملComputational Modes and Grid Imprinting on Five Quasi-Uniform Spherical C Grids
Currently, most operational forecasting models use latitude–longitude grids, whose convergence of meridians toward the poles limits parallel scaling. Quasi-uniform grids might avoid this limitation. Thuburn et al. and Ringler et al. have developed a method for arbitrarily structured, orthogonal C grids called TRiSK, which has many of the desirable properties of the C grid on latitude–longitude ...
متن کامل